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The goal of the EZturb mix model in KULL is to predict the turbulent mixing 
process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz 
instabilities. In this report we focus on a simple example of the Rayleigh-Taylor 
instability (which occurs when a heavy fluid lies above a light fluid, and we perturb the 
interface separating them).  It is well known that the late time asymptotic, fully self-
similar form for the growth of the mixing zone scales quadratically with time. 
 

In Kull, the EZturb k- ε model [1-2] is tightly coupled to the Lagrange hydro, and 
so the actual mix model equations we solve when the model is active are: 
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Here, α r, ρr ,  and Ir are the volume fraction, thermodynamic density, and specific 
internal energy (by mass) for material r. Sij is the strain rate tensor, and τij is the turbulent 
shear stress tensor, for which we use the following Boussinesq approximation: 
 



τ ij = δIso

2
3

ρkδij −δAnso2µt Sij −
δij

3
∂uk

∂xk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    . 

 
The turbulent viscosity includes the effects of both shear and buoyancy and takes the 
form: 
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The unlimited form of the buoyant production term is given by: 
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and the way this term manifests itself in the internal energy equation is: 
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The model constants are C1ε, C2ε, C3ε, σM, σU, σK, σZ, σρ, Cµ, and Cω.  Also, δIso, δAniso, 
and δI,diss are on/off switches that can be set to 1 or 0.  To simplify the form of the 
turbulent viscosity and the Reynolds stress, we will set Cω= 0 and δAniso = 0 for this 
problem. 
 
 Given the complexity of the mix model and the number of coupled PDEs we need 
to solve to compute the growth of the turbulent mixing zone, it is worthwhile to verify a 
priori whether the EZturb model is consistent with t2 growth. Let’s start by defining three 
length scales, where the first will be formed using the turbulent diffusivity (ν) and the 
acceleration (g), the second will be formed using the turbulent kinetic energy (k) and the 
turbulent dissipation (ε), and the third will be formed using g and t.  Dimensional analysis 
gives: 
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L3 = g t2. 



Now assume that k~ta, ε~tb, v~k2/ε, and that there is constant acceleration. Since fully 
self-similar behavior demands that all length scales grow at the same rate, we can solve 
two linear equations to find that a =2 and b=1. Using the fact that ρ is bounded, the 
pressure gradient is bounded by ρg, and that the gradient operator scales like inverse 
length (or t-2), we can show that all the terms in the EZturb k-eqn grow linearly in time, 
and that all the terms in the ε-eqn have a constant behavior in time (provided k and ε have 
the simple time scalings mentioned above). Therefore, when these equations are 
integrated in time, we recover the result that the kinetic energy grows quadratically in 
time, while the dissipation grows linearly in time. Thus, the EZturb model admits t2 
growth as a possible solution.  
 
 Consider a simple 1 dimensional RT problem in a box of length L, with the 
interface separating the heavy fluid from the light fluid located at x = L/2.  Hydrostatic 
pressure balances give P = Pint – ρL g x’ for –L/2 < x’ < 0 and P = Pint – ρH g x’ for 0 < x’ 
< L/2 (here, the subscript ‘L’ denotes light while ‘H’ denotes heavy).  Note that we have 
also made a linear transformation from x to x’, where 0 < x < L and –L/2 < x’ < L/2, so 
that the location of the interface is now at x’ = 0. We will take L = 2 cm, ρH = 2 g/cm3, ρL 
= 1 g/cm3, g = 2 cm/sh2, and Pint = 100 jerks/cm3. The heavy and light fluids will be 
treated as gamma law gases with γH = 5/3 and γL = 1.4.  Since we will be running the RT 
problem in a Lagrangian frame, we will use constant pressure boundary conditions to 
provide the necessary acceleration. If we were running Eulerian (Lagrangian step plus 
remap), then we would impose zero velocity at the walls.  
 

We also want to run this problem in the nearly incompressible regime. To see 
what constraints this places on the initial conditions, consider the definition of the 
compressibility, τ, which is (1/ρ) dρ/dp. This implies dρ = ρτ dp, and ‘incompressible’ 
means that a change in p (when multiplied by the density and compressibility) will only 
cause a small change in ρ. If we divide both sides by dx and assume an ideal gas for 
relating density to pressure, then we arrive at the simple result that (1/ρ) dρ/dx = (1/p) 
dp/dx. Since the pressure gradient for our RT problem scales like ρg, we see that we want 
to keep ρg/P small. This explains why we are using such a large value for the interface 
pressure.  
  
 In addition to setting thermodynamic quantities like density and pressure, we also 
need to initialize values for the turbulent kinetic energy and dissipation. To this end, we 
have specified an initial turbulent kinetic energy of 1.0e-6 cm2/sh2 and an initial length 
scale of 4.0e-6 cm. We then use ε0 = (k0)

3/2/L0 to set the value for the dissipation. Note 
that there is nothing preventing us from specifying energy or length scale as a function of 
position. We are simply choosing to set very small constant values for the turbulent 
quantities and allowing them to build up over time through the buoyant production terms. 
For the model constants and switches, we are using the following values:  
 
σM = σρ = σU = σK = .7, σe = 1.3, cµ = .09, cε1 = 1.44, cε2 = 1.92, cε3 = 1.0, δiso = 1, δaniso = 
0, δI,diss = 1. 
 



Also, we assume the fluids are initially at rest and we set the artificial viscosity to zero.   
 
 Figure 1 shows the results of a convergence study, where we have used uniform 
zoning on meshes with 50, 100, 200, and 400 zones.  For computing the mixing zone 
widths, we have interpolated to find the x-locations for the 5% and 95% values in volume 
fraction. First, we can notice that mixing does not start at t=0, but rather it takes time for 
the turbulent quantities (in particular, the turbulent diffusivity and length scale) to grow 
in the zones adjacent to the fluid interface.  Also, it may seem strange that we are 
stopping the runs when the width is only approaching 1 cm or half of the box length. In 
reality, the tails on the volume fraction distribution are so large that the bubbles and 
spikes are hitting the walls at ~ 5.5 sh. The time step is also extremely small for these 
calculations due to running in the nearly incompressible limit. For example, the time step 
for the 100 zone run is ~ 3.0e-4 sh at early time and decreases as more mixing takes 
place.   
 
 To determine whether we are achieving t2 growth for the mixing zone, it is easier 
to look at the growth rate, since quadratic growth implies a linear rate of growth.  
Numerical differentiation of an interpolated quantity can be noisy, and so to give the 
mixing more time to evolve and reach a self-similar state, the box size was doubled for 
the 50 and 100 zone runs. These results for the time evolution of the growth rate are 
shown in Figure 2.  While the 50 zone run takes a long time to settle into a linear growth 
rate (approximately 5 sh), the 100 zone run appears to reach linear behavior at about 3 sh. 
 
 One can legitimately ask if there is a way to accelerate the onset of growth when 
we initialize the turbulent length scale to be several orders of magnitude below the grid 
spacing. Fortunately, the answer is yes, although we will need to slightly modify the form 
of the buoyant production term. Basically, if we express the buoyant production term in 
term of k and L variables, then there is a factor of k1/2 L that comes from the kinematic 
viscosity. Clearly, if L is very small, then the production term will also be small, and will 
remain so until k and ε grow to the point such that the resulting L = k3/2 / ε is of O(∆x). 
To get contributions at early time, we can multiply the production term by the factor 
(1+∆x/L) [3]. Thus, when L is small compared to ∆x, the buoyant production term has a 
significant effect.  
 
 Figure 3 shows the results of a convergence study with this extra factor included 
in the production term. Now, we do not see the long delay before the onset of growth. 
Also, as we increase the zoning, the widths get smaller, which is more consistent with the 
fact that the volume fraction profiles are getting steeper under mesh refinement. Figure 4 
shows the results of doubling the box length for the 50 and 100 zone calculations, so that 
they can run longer in time.  From this plot, it appears as though we obtain quadratic 
growth around t=5 sh. Since many people often ask what the value of α is in the 
asymptotic growth of the mixing zone, we can compute the slope from this figure at late 
time and divide it by 2 At g. The result is a value of a of .053, which means the αbubble is 
~.0265.  What is important is not the actual value of a, since a self-similar solution would 
uniquely define the value in terms of model constants (the subject of future work), but 
rather that we get the correct temporal scaling. 
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